The International LOFAR Telescope offers a transformational increase in radio survey speed compared to existing radio telescopes, as well as opening up one of the few poorly explored regions of the electromagnetic spectrum. For these reasons, an important goal that has driven the development of LOFAR since its inception is to explore the low-frequency radio sky through surveys, in order to advance our understanding of the formation and evolution of galaxies, clusters and active galactic nuclei (AGN).
Reducing LOFAR radio data is a major challenge. This is due to the enormous data rates, bright sources far away from the pointing centre dominating the signal, radio frequency interference from radio, TV and planes and the corrupting influence of the ionosphere. The breakthrough idea was ‘facet-calibration’ and enables us to produce, for the first time ever, thermal noise limited maps at low frequencies with an angular resolution of ~5 arc seconds from 8 hours of data.

A key aim of the project is to study the properties of shocks and turbulence in merging, low-redshift galaxy clusters. The facet calibration technique has resulted in some of the most sensitive and high-resolution low-frequency images that have ever been produced. These images are highlighting new insights whilst revealing many new questions into how particles are accelerated within the intra-cluster medium (ICM). An excellent example is the LOFAR image of the `Sausage cluster,’ enabling the most precise characterisation of a cluster shock ever.
Image: The most sensitive image of the Sausage cluster observed with the LOFAR HBA antennas at 150 MHz. The cluster shows two opposing giant radio relics created through galaxy cluster mergers. The merger heats up the intra-cluster gas to extremely hot plasma emitting X-rays (green).
Here, particles (e.g. electrons) are accelerated to very high energies. The rest of the resolved sources are mostly radio galaxies hosting an active super massive black hole.
© Duy Hoang (Leiden), Tim Shimwell (Leiden), Andra Stroe (ESO), Reinout van Weeren (Harvard), Georgina Ogrean (ESO) and Huub Rottgering (Leiden) for the LOFAR surveys team